

Technical Data

Phenol Red Xylose Broth

Phenol Red Xylose Broth is used for xylose fermentation studies of microorganisms.

Composition**					
Ingredients	Gms / Litre				
Proteose peptone	10.000				
Beef extract	1.000				
Sodium chloride	5.000				
Xylose	5.000				
Phenol red	0.018				
Final pH (at 25°C)	7.4 ± 0.2				
**Formula adjusted, standardized to suit performance parameters					

Directions

Suspend 21.02 grams in 1000 ml distilled water and mix well. Heat if necessary to ensure complete dissolution. Distribute in fermentation tubes (tubes containing inverted Durham's tubes). Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes.

Principle And Interpretation

Phenol Red Broth Medium is formulated as per Vera (2) and is recommended to determine the fermentation reaction of carbohydrates for the differentiation of microorganisms (3, 4, 5). Phenol Red Broth Medium with various carbohydrates serves as a differential medium by aiding in differentiation of various species and genera by their ability to ferment the specific carbohydrate, with the production of acid or acid and gas (6). Phenol Red Xylose Broth is used to study xylose fermentation in various bacteria.

Proteose peptone and beef extract serve as sources for carbon and nitrogen. Sodium chloride is the osmotic stabilizer. Phenol red is the pH indicator, which turns yellow at acidic pH i.e. on fermentation of xylose. Gas formation is seen in Durhams tubes. All of the *Enterobacteriaceae* grow well in this medium. In addition to producing a pH colour shift, the production of mixed acids, notably butyric acids, often results in a pungent, foul odour from the culture medium (1).

Quality Control						
Appearance						
Light yellow to pink homogeneous free flowing powder						
Colour and Clarity of prepared medium Red coloured clear solution without any precipitate						
Reaction						
Reaction of 2.1% w/v aqueous solution at 25°C. pH : 7.4±0.2						
pH 7.20-7.60						
Cultural Response M1015: Cultural characteristics observed after an incubation at 35 - 37°C for 18 - 24 hours.						
Organism	Inoculum (CFU)	Growth	Acid	Gas		
Cultural Response <i>Citrobacter freundii ATCC</i> 8090	50-100	luxuriant	Positive reaction, yellov colour	Positive vreaction		

M1015

Escherichia coli ATCC 25922	50-100	luxuriant	Positive reaction, yellov colour	Positive wreaction
Enterobacter aerogenes ATCC 13048	50-100	luxuriant	Positive reaction, yellov colour	Positive wreaction
Klebsiella pneumoniae ATCC 13883	50-100	luxuriant	Positive reaction, yellov colour	Positive wreaction
Proteus vulgaris ATCC 13315	50-100	luxuriant	Positive reaction, yellov colour	Weak reaction w
Salmonella Typhi ATCC 6539	50-100	luxuriant	Positive reaction, yellov colour	Negative wreaction
Salmonella Typhimurium ATCC 14028	50-100	luxuriant	Positive reaction, yellov colour	Positive wreaction
Serratia marcescens ATCC 8100	50-100	luxuriant	Negative reaction, no colour change	Negative reaction
Shigella flexneri ATCC 12022	50-100	luxuriant	Negative reaction, no colour change	Negative reaction

Storage and Shelf Life

Store below 30°C in tightly closed container and the prepared medium at 2-8°C. Use before expiry date on the label.

Reference

1. Koneman E. W., Allen S. D., Janda W.M., Schreckenberger P.C., Winn W.C. Jr., 1992, Colour Atlas and Textbook of Diagnostic Microbiology, 4th Ed., J. B. Lippinccott Company

2. Vera H. D., 1950, Am. J. Public Health, 40, 1267

3. MacFaddin J. F., 1985, Media for Isolation-Cultivation-Identification -Maintenanceof Medical Bacteria, Vol. I, Williams and Wilkins, Baltimore.

4. Finegold S. M. and Baron E. J., 1986, Bailey and Scotts Diagnostic Microbiology, 7th Ed., The C.V. Mosby Co., St. Louis.

5. Ewing W. H., 1986, Edwards and Ewings Identification of Enterobacteriaceae, 4th ed., Elsevier Science Publishing Co., Inc., New York.

6. MacFaddin J. F., 2000, Biochemical tests for Identification of Medical Bacteria, 3rd edi., Lippincott, Williams and Wilkins, Baltimore.

Revision : 2 / 2015

Disclaimer :

User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia™ publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia™ Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal or therapeutic use but for laboratory, diagnostic, research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.

HiMedia Laboratories Pvt. Ltd. A-516, Swastik Disha Business Park, Via Vadhani Ind. Est., LBS Marg, Mumbai-400086, India. Customer care No.: 022-6147 1919 Email: techhelp@himedialabs.com